aplikasi pengaman kendaraan 1

 

aplikasi kelompok

Aplikasi pengaman Kendaraan








 

1. TUJUAN [KEMBALI]

        penulisan blog ini bertujuan untuk :

·        Dapat membuat dan mensimulasikan aplikasi dari gerbang logika, encoder, flip-flop.

·        Dapat memahami teori dan prinsip kerja dari gerbang logika, encoder, flip-flop.

 

2. ALAT DAN BAHAN [KEMBALI]

ALAT :

1.         Power Supply

 2.         Voltmeter

 3.         Probe Voltage



BAHAN :

  1.        Resistor

2.        Dioda
 

3.        Transistor NPN 

Spesifikasi

1. DC current gain maksimal 800

2. Arus Collector kontinu (Ic) 100mA

3. Tegangan Base-Emitter (Vbe) 6V

4. Arus Base maksimal 5mA

4.        IC op-amp

5.        Potensiometer 



6.        Gerbang NOT 
Untuk IC gerbang logika NOT tipe TTL menggunakan IC tipe 7404, Tipe IC TTL ini terdiri dari 6 gerbang logika NOT.






13.        Encoder





Komponen Input :

14. MQ-2
  
                                                            

    

Gas Sensor (MQ2) adalah sensor yang berguna untuk mendeteksi kebocoran gas baik pada rumah maupun industri. Sensor ini sangat cocok untuk mendeteksi H2, LPG, CH4, CO, Alkohol, Asap atau Propane. Karena sensitivitasnya yang tinggi dan waktu respon yang cepat, pengukuran dapat dilakukan dengan cepat. Sensitivitas sensor dapat disesuaikan dengan potensiometer.
Spesifikasi:

a. Catu daya pemanas : 5V AC/DC

b. Catu daya rangkaian : 5VDC

c. Range pengukuran : 200 - 5000ppm untuk LPG, propane 300 - 5000ppm untuk butane 5000 - 20000ppm untuk methane 300 - 5000ppm untuk Hidrogen

d. Keluaran : analog (perubahan tegangan)

Ketika terjadi proses pemanasan, kumparan akan dipanaskan sehingga SnO2 keramik menjadi semikonduktor atau sebagai penghantar sehingga melepaskan elektron dan ketika asap dideteksi oleh sensor dan mencapai aurum elektroda maka output sensor MQ-2 akan menghasilkan tegangan analog.

Sensor MQ-2 ini memiliki 6 buah masukan yang terdiri dari tiga buah power supply (Vcc) sebasar +5 volt untuk mengaktifkan heater dan sensor, Vss (Ground)
    

      Pada sebuah gedung atau ruangan diperlukan sebuah alat yang dapat memadamkan api secara otomatis. Pada kesempatan kali ini pemadam api yang dibuat dengan mendeteksi api dan gas pada ruangan sehingga sensor yang digunakan yaitu flame sensor dan MQ-2. Flame sensor merupakan sensor yang mempunyai fungsi sebagai pendeteksi nyala api dimana api memiliki panjang gelombang antara 760nm-1100nm. sensor ini menggunakan infrared sebagai tranduser dalam mensensing kondisi nyala api. Suhu normal pembacaan sensor yaitu pada 25°-85°C dengan sudut pembacaan pada 60°.
Grafik Sensor:

     PERBEDAAN INDIVIDU DAN PERKEMBANGAN KOGNITIF ANAK
    sensor MQ-2 adalah sensor yang digunakann untuk mendeteksi konsentrasi gas yang mudah terbakar di udara serta asap dan output membaca sebagai tegangan analog. Sensor ini dapat mendeteksi konsentrasi gas yang  mudah terbakar di udara serta asap dan keluarannya berupa tegangan analog. Sensor dapat mengukur konsentrasi gas mudah terbakar dari 300 sampai 10.000 sensor ppm. Dapat beroperasi pada suhu dari -20°C sampai 50°C dan mengkonsumsi arus kurang dari 150 mA pada 5V.





15. LM35

 Sensor suhu IC LM 35 merupkan chip IC produksi Natioanal Semiconductor yang berfungsi untuk mengetahui temperature suatu objek atau ruangan dalam bentuk besaran elektrik, atau dapat juga di definisikan sebagai komponen elektronika yang berfungsi untuk mengubah perubahan temperature yang diterima dalam perubahan besaran elektrik. Sensor suhu IC LM35 dapat mengubah perubahan temperature menjadi perubahan tegangan pada bagian outputnya. Sensor suhu IC LM35 membutuhkan sumber tegangan DC +5 volt dan konsumsi arus DC sebesar 60 µA dalam beroperasi. Bentuk fisik sensor suhu LM 35 merupakan chip IC dengan kemasan yang berfariasi, pada umumnya kemasan sensor suhu LM35 adalah kemasan TO-92  seperti terlihat pada gambar dibawah.

 


Dari gambar diatas dapat diketahui bahwa sensor suhu IC LM35 pada dasarnya memiliki 3 pin yang berfungsi sebagai sumber supply tegangan DC +5 volt, sebagai pin output hasil penginderaan dalam bentuk perubahan tegangan DC pada Vout dan pin untuk Ground.

 

Karakteristik Sensor suhu IC LM35 adalah :

 

    - Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.

    -Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC.

    -Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.

    -Bekerja pada tegangan 4 sampai 30 volt.

    -Memiliki arus rendah yaitu kurang dari 60 µA.

    -Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.

    -Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.

    -Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.

 

 

Tabel karakteristik LM35:



 

Se  sensor suhu IC LM35 memiliki keakuratan tinggi dan mudah dalam perancangan jika dibandingkan dengan sensor suhu yang lain, sensor suhu LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kontrol khusus serta tidak memerlukan seting tambahan karena output dari sensor suhu LM35 memiliki karakter yang linier dengan perubahan 10mV/°C. Sensor suhu LM35 memiliki jangkauan pengukuran -55ºC hingga +150ºC dengan akurasi ±0.5ºC. Tegangan output sensor suhu IC LM35 dapat diformulasikan sebagai berikut :

 

Voutput LM35 = Temperature º x 10 mV

Datasheet

        Electrical Engginering: APLIKASI KONTROL KECEPATAN MOTOR MENGGUNAKAN SENSOR  OPTOCOUPLER DAN SENSOR LM35



16. Reed Switch Sensor

Reed switch adalah saklar listrik dioperasikan oleh medan magnet switch terdiri dari dua kawat feromagnetik nikel-besi dan pisau kontak berbentuk khusus (buluh) diposisikan dalam kapsul kaca tertutup rapat dengan celah dan dalam pelindung.



Reed switch dapat dioperasikan dengan menggunakan medan magnet yang dihasilkan oleh salah satu magnet permanen arus pembawa coil..

Teknik Elektro: Keamanan Rumah (PIR & Magnetik Reed Switch)
17. Vibration Sensor /Getaran

   Vibration sensor / Sensor getaran ini memegang peranan penting dalam kegiatan pemantauan sinyal getaran karena terletak di sisi depan (front end) dari suatu proses pemantauan getaran mesin. Secara konseptual, sensor getaran berfungsi untuk mengubah besar sinyal getaran fisik menjadi sinyal getaran analog dalam besaran listrik dan pada umumnya berbentuk tegangan listrik. Pemakaian sensor getaran ini memungkinkan sinyal getaran tersebut diolah secara elektrik sehingga memudahkan dalam proses manipulasi sinyal, diantaranya:

   - Pembesaran sinyal getaran
   - Penyaringan sinyal getaran dari sinyal pengganggu.
   - Penguraian sinyal, dan lainnya.

Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:

  - Sensor penyimpangan getaran (displacement transducer)
  - Sensor kecepatan getaran (velocity tranducer)
  - Sensor percepatam getaran (accelerometer).

Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:

  - Jenis sinyal getaran
  -  Rentang frekuensi pengukuran
  -  Ukuran dan berat objek getaran.
  -  Sensitivitas sensor

Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:

   - Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya

     (power supply) dari luar, misalnya Velocity Transducer.
   - Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.


Spesifikasi :
    -Vsuplai : DC 3.3V-5V
    -Arus : 15mA
    -Sensor : SW-420 Normally Closed
    -Output : digital
    -Dimensi : 3,8 cm x 1,3 cm x 0,7 cm
    -Berat : 10 g


Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :



18.         Logicstate (di proteus)


Komponen Output : 

 19.         Relay


 

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch).

 
 

Konfigurasi Pin :




 

Spesifikasi:

 
 20.        Motor DC

DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion).

Pin 1 : Terminal 1

Pin 2: Terminal 2

 

Catatan: Masing masing terminal jika dipasang terbalik akan menghasilkan putaran yang terbalik juga

 

Spesifikasi : 

 
 21.       Led

LED berfungsi sebagai lampu indikator.

Datasheet LED 



 22.       BCD 7  SEGMENT

 

Komponen Lainnya :

23.         Ground


3. DASAR TEORI [KEMBALI]
  • Resistor

Resistor adalah komponen elektronika pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian elektronika. Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Resitor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm (V = I.R ).



  • Dioda
  • Dioda adalah komponen yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Sebuah Dioda dibuat dengan menggabungkan dua bahan semi-konduktor tipe-P dan semi-konduktor tipe-N. Ketika dua bahan ini digabungkan, terbentuk lapisan kecil lain di antaranya yang disebut depletion layer. Ini karena lapisan tipe-P memiliki hole berlebih dan lapisan tipe-N memiliki elektron berlebih dan keduanya mencoba berdifusi satu sama lain membentuk penghambat resistansi tinggi antara kedua bahan seperti pada gambar di bawah ini. Lapisan penyumbatan ini disebut depletion layer.


    Ketika tegangan positif diterapkan ke Anoda dan tegangan negatif diterapkan ke Katoda, dioda dikatakan dalam kondisi bias maju. Selama keadaan ini tegangan positif akan memompa lebih banyak hole ke daerah tipe-P dan tegangan negatif akan memompa lebih banyak elektron ke daerah tipe-N yang menyebabkan depletion layer hilang sehingga arus mengalir dari Anoda ke Katoda. Tegangan minimum yang diperlukan untuk membuat dioda bias maju disebut forward breakdown voltage.

    Jika tegangan negatif diterapkan ke anoda dan tegangan positif diterapkan ke katoda, dioda dikatakan dalam kondisi bias terbalik. Selama keadaan ini tegangan negatif akan memompa lebih banyak elektron ke material tipe-P dan material tipe-N akan mendapatkan lebih banyak hole dari tegangan positif yang membuat depletion layer lebih besar dan dengan demikian tidak memungkinkan arus mengalir melaluinya. Kondisi ini hanya terjadi pada dioda yang ideal, kenyataannya arus yang kecil tetap dapat mengalir pada bias terbalik dioda.



    Dioda dapat dibagi menjadi beberapa jenis:
    1. Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
    2. Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
    3. Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan.
    4. Dioda Photo yang berfungsi sebagai sensor cahaya.
    5. Dioda Schottky yang berfungsi sebagai Pengendali.


    *Dioda Schottky biasanya berukuran lebih besar dibandingkan dengan dioda penyearah dan memiliki ciri fisik yang sama

    Untuk menentukan arus zenner  berlaku persamaan:

     



    Pada grafik terlihat bahwa pada tegangan dibawah ambang batas tegangan mundur (reverse) sebuah dioda akan tembus (menghantar) dan tidak bisa menahan lagi. Batas ini disebut dengan area tegangan breakdown dioda. Kondisi dioda pada area ini adalah tembus atau menghantar dan tidak menghambat. Kemudian pada level tegangan diantara tegangan breakdown dan tegangan forward terdapat area tegangan reverse dan tegangan cut off. Pada area ini kondisi dioda adalah menahan atau tidak mengalirkan arus listrik.

  • Transistor
  • Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

    1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

    2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

    3. Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.
     

    Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal.



    Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor. 

     

    Rumus transistor NPN:


     

    Karakteristik I/O


    Bentuk gelombang I/O


  •  IC OP AMP

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.



Inverting Amplifier 
 



NonInverting






Komparator




Adder



    Rangkaian Dasar OpAmp



Op-Amp memiliki beberapa karakteristik, diantaranya:

a. Penguat tegangan tak berhingga (AV = )

b. Impedansi input tak berhingga (rin = )

c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = )

d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)


Grafik input dan output op amp


  • Potensiometer


 

Pada dasarnya bagian-bagian penting dalam Komponen Potensiometer adalah :


1.        Penyapu atau disebut juga dengan Wiper

2.        Element Resistif

3.        Terminal


Jenis-jenis Potensiometer


1.    Potensiometer Slider, yaitu Potensiometer yang nilai resistansinya dapat diatur dengan cara menggeserkan Wiper-nya dari kiri ke kanan atau dari bawah ke atas sesuai dengan pemasangannya. Biasanya menggunakan Ibu Jari untuk menggeser wiper-nya.

2.     Potensiometer Rotary, yaitu Potensiometer yang nilai resistansinya dapat diatur dengan cara memutarkan Wiper-nya sepanjang lintasan yang melingkar. Biasanya menggunakan Ibu Jari untuk memutar wiper tersebut. Oleh karena itu, Potensiometer Rotary sering disebut juga dengan Thumbwheel Potentiometer.

3.  Potensiometer Trimmer, yaitu Potensiometer yang bentuknya kecil dan harus menggunakan alat khusus seperti Obeng (screwdriver) untuk memutarnya. Potensiometer Trimmer ini biasanya dipasangkan di PCB dan jarang dilakukan pengaturannya. 


Fungsi-fungsi Potensiometer


1.      Sebagai pengatur Volume pada berbagai peralatan Audio/Video seperti Amplifier, Tape Mobil, DVD Player.

2.        Sebagai Pengatur Tegangan pada Rangkaian Power Supply

3.        Sebagai Pembagi Tegangan

4.        Aplikasi Switch TRIAC

5.        Digunakan sebagai Joystick pada Tranduser

6.     Sebagai Pengendali Level Sinyal


  • Gerbang NOT

Gerbang NOT disebut juga inverter, gerbang ini hanya mempunyai satu input dan satu output. Persamaan logika aljabar Boole untuk output gerbang NOT adalah Y = Ā . Jadi output gerbang NOT selalu merupakan kebalikan dari input-nya. Jika input diberikan logika tinggi maka pada output akan dihasilkan logika rendah, dan pada saat input diberikan logika rendah maka pada output akan dihasilkan logika tinggi (Tokheim, 1995). Simbol gerbang NOT diperlihatkan pada Gambar 2.1 dan tabel kebenaran gerbang NOT diperlihatkan pada Tabel 2.1.  



  • Encoder

Sebuah rangkaian Encoder menterjemahkan keaktifan salah satu inputnya menjadi urutan bit-bit biner. Encoder terdiri dari beberapa input line, hanya salah satu dari input-input tersebut diaktifkan pada waktu tertentu, yang selanjutnya akan menghasilkan kode output Nbit. Gambar 12-1 menunjukkan blok diagram dari sebuah encoder. 

Tabel Kebenaran dari Rangkaian Encoder 8x3 ditunjukkan pada Tabel 12-1.a
Berdasarkan output dari Tabel Kebenaran di atas, dibuat rangkaian encoder yang merupakan aplikasi dari gerbang OR, seperti ditunjukkan pada gambar 12-2. 







Komponen lainnya :
  • Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi.


Terdapat besi atau yang disebut dengan nama iron core dililit oleh sebuah kumparan yang berfungsi sebagai pengendali. Sehingga ketika kumparan coil diberikan arus listrik maka akan menghasilkan gaya elektromagnet. Gaya tersebut selanjutnya akan menarik armature untuk pindah posisi dari normally close ke normally open. Dengan demikian saklar menjadi pada posisi baru normally open yang dapat menghantarkan arus listrik. Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normally close.

Fitur:
1. Tegangan pemicu (tegangan kumparan) 5V
2. Arus pemicu 70mA
3. Maksimum beban AC 10A @ 250/125V
4. Maksimum baban DC 10A @ 30/28V
5. Switching maksimum 300 operasi/menit

  • Motor (FAN)

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan RotorStator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).

Prinsip Kerja Motor DC

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

Untuk membuatnya berputar hubungkan saja sisi positif (+) baterai ke satu terminal dan tanda Negatif (-) baterai ke ujung lainnya dan motor akan berputar. Jika ingin membalik kecepatan motor cukup tukar terminal dan arahnya juga akan dibalik. Untuk mengontrol kecepatan motor variasikan tegangan yang disuplai ke Motor, cara termudah untuk melakukannya adalah menggunakan Potensiometer.

  •  LED

LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.


Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).


Tegangan Maju LED

  •  Logicstate
Logicstate yaitu pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.
Karena hanya dua status logika, logika 1 dan logika 0, yang dimungkinkan, teknik aljabar Boolean dapat digunakan untuk menganalisis rangkaian digital yang melibatkan sinyal biner. Istilah logika positif diterapkan ke sirkuit di mana logika 1 ditetapkan ke level tegangan yang lebih tinggi; Dalam rangkaian logika negatif, logika 1 ditunjukkan dengan level tegangan yang lebih rendah.
  • BCD 7 Segment
Dekoder merupakan rangkaian elektronika yang berfungsi untuk menampilkan kode-kode biner menjadi karakter yang dapat dipahami secara visual. Decoder BCD ke 7 segment merupakan rangkaian elektronika yang berfungsi untuk mengubah kode BCD menjadi karakter tampilan angka desimal yang dapat dilihat secara visual. Ilustrasi dekoder BCD ke 7 segment dapat dipahami dari gambar berikut :
Data BCD 4 bit diubah menjadi tampilan visual angka desimal 0-9 menggunakan rangkaian logika dasar digital (AND, OR dan NOR). Data BCD 4 bit tersebut diubah sesuai nilai desimal seperti pada tabel berikut.
Proses pengkodean data BCD menjadi tampilan angka desimal dilakukan secara terpisah untuk tiap ruas/segment (ruas a- ruas g). Untuk membangun sebuah dekoder 7 segment dari data tabel kebenaran diatas, langkah pertama adalah menentukan persamaan yang dapat mewakili fungsi dekoder tiap ruas. Setelah itu dapat di buat rangkaian decoder untuk tiap ruas menggunakan rangkaian digital dari gerbang logika dasar.

 

4. PROSEDUR PERCOBAAN 
 [KEMBALI]

1)     Buka aplikasi proteus

2)     Pilih komponen yang dibutuhkan.

3)     Rangkai setiap komponen menjadi rangkaian yang diinginkan

4)     Ubah spesifikasi komponen sesuai kebutuhan

5)     Jalankan simulasi rangkaian.

 

5. RANGKAIAN SIMULASI [KEMBALI]


6. VIDEO [KEMBALI]

 

7. DOWNLOAD FILE [KEMBALI]

RANGKAIAN SIMULASI

VIDIO SIMULASI

HTML

 

[DATA SHEET RESISTOR] 

[DATA SHEET LED ] 

[DATA SHEET diode 10A10 ] 

[DATA SHEET BC548 ] 

[DATA SHEET OPAMP ] 

[DATA SHEET POTENSIOMETER ] 

[DATA SHEET GERBANG NOT ] 

[DATA SHEET GERBANG NOR ] 

[DATA SHEET GERBANG XNOR ] 

[DATA SHEET GERBANG AND ] 

[DATA SHEET GERBANG OR ] 

[DATA SHEET GERBANG NAND ] 

[DATA SHEET 4013 ] 

[DATA SHEET 74147 ]

[DATA SHEET LM35 ] 

[DATA SHEET RELAY ] 

[DATA SHEET MOTOR ] 

[DATA SHEET 7segment ] 

Datasheet PIR

Library PIR 





Datasheet Relay

Datasheet Buzzer

Datasheet Motor-DC

Datashet OP-amp

Datasheet Reed Switch Sensor

Datasheet Vibration Sensor   

Datasheet LM35

Library Reed Switch Sensor

Library Vibration Sensor

 

Komentar :

Posting Komentar